On max-k-sums

نویسنده

  • Michael J. Todd
چکیده

The max-k-sum of a set of real scalars is the maximum sum of a subset of size k, or alternatively the sum of the k largest elements. We study two extensions: First, we show how to obtain smooth approximations to functions that are pointwise max-k-sums of smooth functions. Second, we discuss how the max-k-sum can be defined on vectors in a finite-dimensional real vector space ordered by a closed convex cone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal inequalities for centered norms of sums of independent random vectors

Let X1, X2, . . . , Xn be independent random variables and Sk = Pk i=1 Xi. We show that for any constants ak, P( max 1≤k≤n ||Sk| − ak| > 11t) ≤ 30 max 1≤k≤n P(||Sk| − ak| > t). We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.

متن کامل

A fast numerical method for max-convolution and the application to efficient max-product inference in Bayesian networks

Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in ...

متن کامل

An Application of Hermitian K-Theory: Sums-of-Squares Formulas

By using Hermitian K-theory, we improve D. Dugger and D. Isaksen’s condition (some powers of 2 dividing some binomial coefficients) for the existence of sums-of-squares formulas. 2010 Mathematics Subject Classification: 19G38; 11E25; 15A63

متن کامل

Stepanov’s Method Applied to Binomial Exponential Sums

For a prime p and binomial axk+bxl with 1 ≤ l < k < 1 32 (p−1) 2 3 , we use Stepanov’s method to obtain the bound ∣∣∣∣∣ p−1 ∑ x=1 ep(ax k + bx) ∣∣∣∣∣ max { 1, l∆− 1 3 } 1 4 k 1 4 p 3 4 , where ∆ = k−l (k,l,p−1) .

متن کامل

Convex geometry of max-stable distributions

It is shown that max-stable random vectors in [0,∞)d with unit Fréchet marginals are in one to one correspondence with convex sets K in [0,∞)d called max-zonoids. The max-zonoids can be characterised as sets obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as the selection expectation of a random crosspolytope whose distribution is controlled by the spectral measure of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016